Research and Development Plan

GIF Policy and Experts Meeting: Rio de Janeiro July 9-10, 2002

Topics

- Process used to define R&D
- Overview of R&D phases
- Highlights of R&D recommendations
 - Concept specific
 - Crosscutting
- Next steps

R&D Definition Process

 TWGs first identified technology gaps/issues, focusing on selected systems

Sodium liquid metal-cooled reactor system

Very high temperature reactor system

Supercritical water-cooled reactor system

Lead or lead/bismuth-cooled cartridge core
reactor system

(Pb/Bi Battery)

Gas-cooled fast reactor system

(MSR)

- Gaps were characterized in terms of
 - Significance to system viability/performance/optimization
 - Magnitude, using "technology readiness scale"
- TWGs defined R&D activities to address gaps
 - R&D characterized in terms of priority, duration, and cost

R&D Definition Process, cont'd

- Crosscut groups (CGs) examined
 - Crosscutting technology gaps and R&D
 - Opportunities for R&D common to multiple concepts
- Technology gaps and R&D are documented in R&D Scope reports
 - One report from each TWG and CG
- R&D priorities and time phasing were reviewed by the RIT and WG leaders during the Boston quarterly meeting
- Summaries of R&D recommendations were drafted for the Interim Roadmap

R&D Phases

- Viability establishment phase
 - Prove basic concepts, technologies and processes at relevant conditions
 - Identify and resolve potential "show-stoppers"
 - Specify most promising technical options
- Performance qualification phase, contingent on successful completion of viability R&D
 - Verify system capabilities at engineering scale in prototypical conditions
 - Develop conceptual design of demonstration system
- System evaluation planned at the end of the viability phase
 - Verify performance potential relative to goals
 - Using advances in evaluation methodology

Concept Development Phases

Concept R&D Overview

Key technology gaps for each system

Recommended viability R&D activities

Overview of performance R&D

Sodium LMR: Technology Gaps

- Fuel cycle technologies for actinide management
 - Waste minimization
 - Waste form durability
 - Proliferation resistance
- Reactor technology is comparatively mature; remaining needs include
 - Passive safety assurance
 - Cost reduction
 - Improved in-service maintainability

Sodium LMR R&D

- Engineering development of advanced aqueous technology
 - Powdering technology for fuel de-cladding
 - Crystallization method for extraction of excess U
 - Co-extraction of U/Pu/Np; low-waste recovery of Am and Cm
 - Simplified pellet fabrication process
- Development and scale-up of pyroprocess technologies
 - Head-end reduction of LWR spent fuel to metal
 - Recovery of transuranics from metallic fuel
 - Waste reduction and waste-form qualification
- Fuel development
 - Remote fabrication of minor actinide bearing fuels
 - Performance of recycled fuel
- Improvement of capabilities for in-service inspection and repair

VHTR: Technology Gaps

- Fuels and materials for increased temperature operation
 - Targeted outlet temperature >950°C
 - Requires extension of technology base of nearer term systems, e.g., coated particle fuels
- System application to hydrogen production
 - Efficient and safe coupling of the reactor and thermo-chemical process plant

VHTR R&D

- Fuels for increased operating and transient temperatures
 - High temperature coatings (e.g., ZrC)
 - Fuel design for reduced temperature rise
- High temperature materials development
 - Metallic materials for IHX, gas ducts/pipes, isolation valves (e.g., Ni-Cr-W super-alloy)
 - Ceramic materials for T >950°C (e.g., C/C composites, superplastic ceramics)
- Development of the reactor interface with the energy conversion system

SCWR: Technology Gaps

- Materials for cladding and core structures in supercritical water
 - ~25 MPa, 500°C coolant outlet temperature
 - Requires extension
 of technology bases
 from ALWR and
 supercritical water
 (SCW) fossil plants
- Reactor safety
 - T/H data
 - LOCA progression
 - Stability

SCWR R&D

- Testing of cladding and structural materials to demonstrate
 - Resistance to corrosion and stress corrosion cracking
 - For temperatures up to 620°C
 - For radiation doses up to 30 dpa (thermal); 150 dpa (fast)
 - Accounting for water chemistry and radiolytic decomposition
 - Dimensional and micro-structural stability
 - Strength, ductility and creep-resistance as a function of irradiation dose and temperature
- Safety R&D
 - Measurements to reduce uncertainty in SCW transport properties and correlations for heat transfer and fluid flow
 - Measurement of LOCA phenomena and adaptation/qualification of computer models
 - Verification of ability to prevent and control power-flow instabilities

09-Jul-2002 Slide 13

Pb/Bi Battery: Technology Gaps

- Metallic or nitride fuel for ultra long life core
- Recycle technology for nitride fuel
- Compatibility of structural materials with Pb alloy coolant
- Factory fabrication of transportable core or reactor module
- System application to hydrogen production

Coolant
Coolant outlet temp.
Fuel
Structural material

Electricity
Pb/Bi
~550°C
Metal or nitride
Ferritic steel

Hydrogen
Pb
~800°C
Nitride
Ceramic

Pb/Bi Battery R&D

- Development/verification of cladding and structural materials
 - Fabricability, compatibility with fuel and coolant, resistance to irradiation damage, retention of strength and ductility – over 15 to 20 year service life
 - Monitoring and control of coolant chemistry
- (U,TRU)nitride fuel and recycle development, building on existing programs in Japan and Europe
- Development of T/H data base for natural circulation heat removal
- Development of energy conversion technologies
 - Heat exchangers to transport heat to working fluid or hydrogen plant
 - Supercritical CO₂ turbine
 - Calcium-Bromine process for hydrogen production

GFR: Technology Gaps

- Fuels with increased actinide and reduced moderator content relative to thermal spectrum systems
- Efficient fuel recycle technologies
- Materials for high temperature and high fast neutron fluence service
- Safety concept to accommodate low thermal inertia and poor heat transfer capability of gas coolant at low pressure

GFR R&D

- Screening and evaluation of high actinide-density fuels
 - Modified coated particle or dispersion type fuels, e.g.,
 - (U,TRU)C/SiC
 - (U,TRU)N/TiN
 - Fuel pins with high-temperature cladding
- Core structural materials for high-temperature and fast fluence conditions (ceramics, composites, refractory alloys)
- Core configuration for enhanced thermal inertia and passive dissipation of decay heat
- Fuel recycle technologies
 - Separation of fuel compound from matrix
 - Aqueous and dry recycle options; ¹⁵N recovery from nitride

9-Jul-2002 Slide 1

MSR: Technology Gaps

- Fuel salt selection and characterization
 - Actinide consumption focus rather than efficient breeding
- On-line fission product removal technology
- Performance of metallic and graphite structural materials
- System design for safety and reliability

MSR R&D

- Selection/characterization of fuel salt for actinide consumption application
 - Limit generation of tritium
 - Verify solubility of minor actinides
 - Characterize behavior of fission and activation products
 - Determine thermo-physical data
- Develop processing technology for fuel salt leading to waste forms of acceptable purity and durability
- Demonstrate performance capabilities of metallic and graphite structural materials
 - Lifetime compatibility with molten salt constituents
 - Durability in radiation environment
- Develop technical means for resolving such challenges as
 - Preventing noble metal fission product plate-out on walls of the intermediate heat exchanger
 - Limiting tritium diffusion from primary system

09-Jul-2002 Slide 19

Performance R&D Overview

Rio PresentationBP19-00 09-Jul-2002 Slide 20

Crosscutting R&D Approach

- Identify concept-independent technology gaps and advancement opportunities
- Examine concept specific R&D recommendations for applicability to multiple concepts
- Formulate concept-independent/common R&D
- Determine high-priority activities
 - Key to resolving viability issues or selecting among options
 - Significant opportunity for reducing R&D cost

Crosscut R&D Recommendations

Crosscut Area	Research Topic	Na LMR	Pb/Bi Battery	GFR	VHTR	SCWR	MSR
Fuel Cycle	Integrated once-through fuel cycle				X	X(T)	
	Optimum management of Cs and Sr	X	X	X		X(F)	X
	Cm management and target fabrication	X(O)	X	X		X(F)	
	Aqueous processing with group separation of Actinides	X(O)	X	X		X(F)	
	Pyroprocess actinide recovery optimization	X(M)	X	X			

M: Metal Fuel O: Oxide Fuel T: Thermal Spectrum

F: Fast Spectrum

Crosscut R&D Recommendations, cont'd

Crosscut Area	Research Topic	Na LMR	Pb/Bi Battery	GFR	VHTR	SCWR	MSR
Fuels and Materials	Properties and behavior of structural materials T < 600°C 600°C < T < 900°C 900°C < T	X	X X	X X	X	X X	X X
	Development of fuel fabrication techniques	X	X	X	X	X	
	Irradiation and transient testing campaigns	X	X	X	X	X	X
	Fundamental modeling of materials behavior	X	X	X	X	X	X
Energy Products	Analysis of market requirements		X		X		X
	Thermochemical water splitting processes		X	X	X		X

Crosscut R&D Recommendations, cont'd

Crosscut Area	Research Topic	Na LMR	Pb/Bi Battery	GFR	VHTR	SCWR	MSR
Economics	Modular fabrication and installation technologies	X	Х	X	X		
	Instrumentation, control, and human-machine interface	X	X	X	X	X	X
Risk and Safety	Radionuclide transport and dose assessments	X	X	X	X	X	Х
Evaluation Methods	Economics: consistent, integrated cost and revenue models	Х	Х	Х	X	Х	Х
	Enhanced probabilistic risk assessment tools	X	X	X	X	X	X
	Proliferation resistance and physical protection criteria and methods	X	X	X	X	X	X

09-Jul-2002 Slide 24

Next Steps

- Incorporate review comments on recommended R&D
 - Completeness
 - Justification/priorities
 - Designation as concept-specific vs. crosscutting tasks
- Integrate R&D recommendations and document in Roadmap R&D plan
 - RIT lead with support of WG leaders and key personnel
 - Delineate concept specific and crosscutting activities
 - Lay out major technology decision points
- Complete interim roadmap and issue for review

